我要投搞

标签云

收藏小站

爱尚经典语录、名言、句子、散文、日志、唯美图片

当前位置:2019跑狗图高清彩图 > 谕示 >

徐光启故事及生平

归档日期:07-20       文本归类:谕示      文章编辑:爱尚语录

  万历二十一年徐光启受聘韶州任教,在韶州首次接触传教士郭居静。在郭居静那儿,他第一次见到一幅世界地图,知道在中国之外竟有那么大的一个世界。

  又第一次听说地球是圆的,有个叫麦哲伦的西洋人乘船绕地球环行了一周,还第一次听说意大利科学家伽利略制造了天文望远镜。

  能清楚地观测天上星体的运行。所有这些,对他来说,都是闻所未闻的之事。从此,他又开始接触西方近代的自然科学。

  徐光启1562年4月24日在上海县法华汇出生,,字子先,号玄扈,徐光启毕生致力于数学、天文、历法、水利等方面的研究,勤奋著述,尤精晓农学。

  译有《几何原本》《泰西水法》《农政全书》等著书。同时他还是一位沟通中西文化的先行者。为17世纪中西文化交流作出了重要贡献,崇祯六年(公元1633年),徐光启病逝。

  徐光启在未中进士之前,曾长期辗转苦读,在破万卷书、行万里路之后,深知流行于明中叶以后的陆王心学,主张禅静顿悟、反对经世致用,实为误国害民。

  有人记述徐光启当时的变化说他尝学声律、工楷隶,及是悉弃去,专习天文、兵法、屯、盐、水利诸策,旁及工艺数学,务可施用于世者。

  还有人记述说公初筮仕入馆职,即身任天下,讲求治道,博极群书,要诸体用。诗赋书法,素所善也,既谓雕虫不足学,悉屏不为,专以神明治历律兵农,穷天人指趣。

  徐光启思想上的如此转变,使他的后半生走上了积极主张经世致用、崇尚实学的道路。徐光启是明学术界、思想界兴起的实学思潮中的一位有力的鼓吹者、推动者。

  展开全部徐光启(1562-1633),字子先,号玄扈,谥文定。明松江人,汉族。万历三十二年(1604)进士。通天文、历算,习火器。入天主教,与意大利人利玛窦研讨学问。四十年,充历书纂修官,与传教士熊三拔共制天、地盘等观象仪。次年遭讦,称病去职,屯耕于天津。四十七年,明军败于萨尔浒,疏请自效,擢河南道御史,练兵通州。熹宗即位,以志不得展,藉病归。天启元年(1621)复职,力请铸红夷炮御敌,后忤魏忠贤革职。崇祯元年(1628)召还,奉敕督领历清军。三年,疏陈垦田、水利、救荒、盐法等拯时急务,擢礼部尚书,奉旨与传教士龙华民、邓玉函、罗雅各等修正历法。五年,以礼部尚书兼殿阁大学士入参机务。崇祯六年(1633年)卒于北京。赠少保,谥文定。著有REN《徐氏庖言》、《诗经六帖》,编著《农政全书》、《崇祯历书》,译《几何原本》、《泰西水法》等。

  明嘉靖四十一年(1562年),生于南直隶松江府上海县法华汇(今上海市,为了纪念徐光启而改名为徐家汇)一个小商人的家里。当时的法华汇还不是城市而是乡村,四周都是种满庄稼的农田。徐光启小时候进学堂读书,就很留心观察周围的农事,对农业生产有着浓厚的兴趣。

  青少年时代的徐光启,聪敏好学,活泼矫健,当时人们说他“章句、帖括、声律、书法均臻佳妙”,喜欢雪天登城,在龙华寺读书时喜登塔顶,“与鹊争处,俯而喜”。万历九年(1581)中秀才,“便以天下为己任。为文钩深抉奇,意义自畅”,他曾说道“文宜得气之先,造理之极,方足炳辉千古”。这是由神童到才子的形象。

  二十岁考中秀才以后,他在家乡和广东、广西教书,白天给学生上课,晚上广泛阅读古代的农书,钻研农业生产技术。由于农业生产同天文历法、水利工程的关系非常密切,而天文历法、水利工程又离不开数学,他又进一步博览古代的天文历法、水利和数学著作。

  万历九年中秀才后,因家境关系,徐光启开始在家乡教书。加之连年自然灾害,他参加举人考试又屡试不中,这期间,他备受辛苦。

  展开全部徐光启(1562-1633),字子先,号玄扈,谥文定。明松江人,汉族。万历三十二年(1604)进士。通天文、历算,习火器。入天主教,与意大利人利玛窦研讨学问。四十年,充历书纂修官,与传教士熊三拔共制天、地盘等观象仪。次年遭讦,称病去职,屯耕于天津。四十七年,明军败于萨尔浒,疏请自效,擢河南道御史,练兵通州。熹宗即位,以志不得展,藉病归。天启元年(1621)复职,力请铸红夷炮御敌,后忤魏忠贤革职。崇祯元年(1628)召还,奉敕督领历清军。三年,疏陈垦田、水利、救荒、盐法等拯时急务,擢礼部尚书,奉旨与传教士龙华民、邓玉函、罗雅各等修正历法。五年,以礼部尚书兼殿阁大学士入参机务。崇祯六年(1633年)卒于北京。赠少保,谥文定。著有REN《徐氏庖言》、《诗经六帖》,编著《农政全书》、《崇祯历书》,译《几何原本》、《泰西水法》等。

  明嘉靖四十一年(1562年),生于南直隶松江府上海县法华汇(今上海市,为了纪念徐光启而改名为徐家汇)一个小商人的家里。当时的法华汇还不是城市而是乡村,四周都是种满庄稼的农田。徐光启小时候进学堂读书,就很留心观察周围的农事,对农业生产有着浓厚的兴趣。

  青少年时代的徐光启,聪敏好学,活泼矫健,当时人们说他“章句、帖括、声律、书法均臻佳妙”,喜欢雪天登城,在龙华寺读书时喜登塔顶,“与鹊争处,俯而喜”。万历九年(1581)中秀才,“便以天下为己任。为文钩深抉奇,意义自畅”,他曾说道“文宜得气之先,造理之极,方足炳辉千古”。这是由神童到才子的形象。

  二十岁考中秀才以后,他在家乡和广东、广西教书,白天给学生上课,晚上广泛阅读古代的农书,钻研农业生产技术。由于农业生产同天文历法、水利工程的关系非常密切,而天文历法、水利工程又离不开数学,他又进一步博览古代的天文历法、水利和数学著作。

  万历九年中秀才后,因家境关系,徐光启开始在家乡教书。加之连年自然灾害,他参加举人考试又屡试不中,这期间,他备受辛苦。

  回答者: 浮生陌颜 - 举人 五级 11-11 19:02 分类上升达人排行榜

  学过数学的人,都知道它有一门分科叫作“几何学”,然而却不一定知道“几何”这个名称是怎么来的。在我国古代,这门数学分科并不叫“几何”,而是叫作“形学”。“几何”二字,在中文里原先也不是一个数学专有名词,而是个虚词,意思是“多少”。比如三国时曹操那首著名的《短歌行》诗,有这么两句:“对酒当歌,人生几何?”这里的“几何”就是多少的意思。那么,是谁首先把“几何”一词作为数学的专业名词来使用的,用它来称呼这门数学分科的呢?这是明末杰出的科学家徐光启。

  徐光启(1562-1633年)出生在上海县法华汇(今上海市徐家汇)一个小商人的家里。当时的法华汇还不是城市而是乡村,四周都是种满庄稼的农田。徐光启小时候进学堂读书,就很留心观察周围的农事,对农业生产有着浓厚的兴趣。二十岁考中秀才以后,他在家乡和广东、广西教书,白天给学生上课,晚上常常默对孤灯,广泛阅读古代的农书,钻研农业生产技术。由于农业生产同天文历法、水利工程的关系非常密切,而天文历法、水利工程又离不开数学,他又进一步博览古代的天文历法、水利和数学著作

  1594年,徐光启在韶州(今广东韶关)教书的时候,认识了一个来中国传播天主教的耶稣会土郭静居。在郭静居那儿,他第一次见到一幅世界地图,知道在中国之外竟有那么大的一个世界;又第一次听说地球是圆的,有个叫麦哲伦的西洋人乘船绕地球环行了一周;还第一次听说意大利科学家伽利略制造了天文望远镜,能清楚地观测天上星体的运行。所有这些,对他来说,都是闻所未闻的新鲜事。从此,他又开始接触西方近代的自然科学,知识更加丰富了。

  明朝末年,宦官专权,政治黑暗,人民的生活非常痛苦,农民起义到处发生;正在东北崛起的满洲贵族,又不时对明朝发动进攻,整个社会处在动荡不安的状态。象所有正直的知识分子一样,徐光启富于爱国的热忱,他希望能够利用科学技术帮助国家富强起来,使天下的黎民过上“丰衣食,绝饥寒”的安定富裕的生活。因此,他认为不仅应该认真总结我国古代的科学成就,还应该很好地学习西方先进的自然科学,取长补短,使我国的科学技术得到进一步的发展。

  在同郭静居交往的时候,徐光启听说到中国来传教的耶稣会会长利玛窦精通西洋的自然科学,就到处打听他的下落,想当面向他请教。1600年,他得到了利玛窦正在南京传教的消息,即专程前往南京拜访。

  利玛窦是意大利人,原名叫玛太奥·利奇。他从小勤奋好学,对数学、物理学、天文学、医学都很有造诣,而且擅长制作钟表、日晷(gui鬼,日晷是古代一种测定时间的仪器),善于绘制地图和雕刻。三十岁从神学院毕业,利玛窦被耶稣会派到中国来传教。他为了便于同中国人交往,刻苦学习中国的语言、文字和古代文化,换上中国的服装,按照中国的礼节和风俗习惯进行活动,还为自己取了利玛窦这样一个中国名字。

  徐光启见到利玛窦,对他表示了仰慕之情,希望向他学习西方的自然科学。利玛窦看他是个读书人,也想向他学习中国古代的文化典籍,并热衷发展他为天主教徒,就同他交谈起来。他们从天文谈到地理,又谈到中国和西方的数学。临别的时候,利玛窦对徐光启学习西方自然科学的请求未置可否,却送给他两本宣传天主教的小册子。一本是《马可福音》,讲的是耶稣的故事,另一本是《天主实义》,是利玛窦用中文写的解释天主教义的书。徐光启心里明白,这是要他先加入天主教,然后才肯向他传播西方的科学知识。后来,他经过三年之久的慎重考虑,为了学习西方的自然科学,就全家加入了天主教。

  加入天主教的第二年,四十二岁的徐光启考中进士,担任翰林院庶吉士的官职,在北京住了下来。而利玛窦在同徐光启见面的第二年,也来到了北京。他向明神宗贡献礼品,得到明神宗的批准,在宣武门外置了一处住宅,长期留居下来,进行传教活动。徐光启在公余之暇,常常去拜访利玛窦,你来我往,彼此慢慢熟悉了,开始建立起较深的友谊。1606年,徐光启再次请求利玛窦传授西方的科学知识,利玛窦爽快地答应了。他用公元前三世纪左右希腊数学家欧几里得的著作《原本》做教材,对徐光启讲授西方的数学理论。利玛窦每两天讲授一次,徐光启总是准时到达,不论是朔风怒吼,还是大雪纷飞,从不间断。

  经过一段时间的学习,徐光启完全弄懂了欧几里得这部著作的内容,深深地为它的基本理论和逻辑推理所折服,认为这些正是我国古代数学的不足之处。他感到,我国的古代数学虽然也取得了极其辉煌的成就,但千百年来一直受到经验实证的限制,未能很好地运用逻辑推理的方法。如果能把欧几里得的这部著作介绍过来,对我国数学的发展将是很有好处的。于是,徐光启建议利玛窦同他合作,一起把它译成中文。开始,利玛窦对这个建议颇感犹豫,因为欧几里得的这部著作是用拉丁文写的,拉丁文和中文语法不同,词汇也很不一样,书里的许多数学专业名词在中文里都没有相应的现成词汇。要译得准确、流畅而又通俗易懂,是很不容易的。早先曾有一个姓蒋的举人同利玛窦合作试译过,就因为这个缘故而不得不半途而废。但是徐光启却很有信心,他认为只要肯下功夫,多动脑筋,仔细推敲,反复修改,总是可以译成的。在他的一再劝说下,利玛窦也就同意了。

  从1606年的冬天开始,他们两人开始了紧张的翻译工作。每天晚上,他们坐在灯烛之下,先由利玛窦用中文逐字逐句地口头翻译,再由徐光启草录下来。译完一段,徐光启再字斟句酌地作一番推敲修改,然后由利玛窦对照原著进行核对。遇有译得不妥当的地方,利玛窦就把原著再仔细地讲述一遍,让徐光启重新修改。如此反复数次,直到认为满意了,再接着译下一段。徐光启对翻译非常认真,常常是到了深夜,利玛窦休息了,他还独自坐在灯下加工、修改译稿。有时为了确定一个译名,他不断地琢磨、推敲,不知不觉地就忙到天亮。译文里的“平行线”、“三角形”、“对角”、“直角”、“锐角”、“钝角”、“相似”等等中文的名词术语,都是经过他呕心沥血的反复推敲而确定下来的。

  从大雪纷飞的冬季忙到来年桃李花开的春天,徐光启和利玛窦译出了这部著作的前六卷。徐光启想一鼓作气,接着往下译,争取在年内译完后九卷,但利玛窦却主张先将前六卷刻印出版,听听反映再说。付印之前,徐光启又独自一人将译稿加工、润色了三遍,尽可能把译文改得准确。然后他又同利玛窦一起,共同敲定书名的翻译问题。这部著作的拉丁文原名叫《欧几里得原本》,如果直译成中文,不大象是一部数学著作。如果按照它的内容,译成《形学原本》,又显得太陈旧了。利玛窦说,中文里的“形学”,英文叫作“Geo”,它的原意是希腊的土地测量的意思,能不能在中文的词汇里找个同它发音相似、意思也相近的词。徐光启查考了十几个词组,都不理想。后来他想起了“几何”一词,觉得它与“Geo”音近意切,建议把书名译成《几何原本》,利玛窦感到很满意。1607年,《几何原本》前六卷正式出版,马上引起巨大的反响,成了明末清初从事数学工作的人的一部必读书,对发展我国的近代数学起了很大的作用。

  后来,徐光启虽然没有能够再和利玛窦一起译出《几何原本》的后九卷,但他又陆续写了许多其他的科学著作,特别是《农政全书》这部巨著,在我国和世界科学史上都具有重要的地位。后世的人们,为了纪念徐光启在科学上的卓越贡献,就把他的家乡法华汇改名为徐家汇。

  几何最早的有记录的开端可以追溯到古埃及(参看古埃及数学),古印度(参看古印度数学),和古巴比伦(参看古巴比伦数学),其年代大约始于公元前3000年。早期的几何学是关于长度,角度,面积和体积的经验原理,被用于满足在测绘,建筑,天文,和各种工艺制作中的实际需要。在它们中间,有令人惊讶的复杂的原理,以至于现代的数学家很难不用微积分来推导它们。例如,埃及和巴比伦人都在毕达哥拉斯之前1500年就知道了毕达哥拉斯定理(勾股定理);埃及人有方形棱锥的锥台(截头金字塔形)的体积的正确公式;而巴比伦有一个三角函数表。

  中国文明和其对应时期的文明发达程度相当,因此它可能也有同样发达的数学,但是没有那个时代的遗迹可以使我们确认这一点。也许这是部分由于中国早期对于原始的纸的使用,而不是用陶土或者石刻来记录他们的成就。

  几何这个词最早来自于希腊语“γεωμετρα”,由“γα”(土地)和“μετρε ν”(测量)两个词合成而来,指土地的测量,即测地术。后来拉丁语化为“geometria”。中文中的“几何”一词,最早是在明代利玛窦、徐光启合译《几何原本》时,由徐光启所创。当时并未给出所依根据,后世多认为一方面几何可能是拉丁化的希腊语GEO的音译,另一方面由于《几何原本》中也有利用几何方式来阐述数论的内容,也可能是magnitude(多少)的意译,所以一般认为几何是geometria的音、意并译。

  1607年出版的《几何原本》中关于几何的译法在当时并未通行,同时代也存在着另一种译名——形学,如狄考文、邹立文、刘永锡编译的《形学备旨》,在当时也有一定的影响。在1857年李善兰、伟烈亚力续译的《几何原本》后9卷出版后,几何之名虽然得到了一定的重视,但是直到20世纪初的时候才有了较明显的取代形学一词的趋势,如1910年《形学备旨》第11次印刷成都翻刊本徐树勋就将其改名为《续几何》。直至20世纪中期,已鲜有“形学”一次的使用出现。

  古希腊几何作图的三大问题是:①化圆为方,求作一正方形,使其面积等于一已知圆;②三等分任意角;③倍立方,求作一立方体,使其体积是一已知立方体的两倍。这些问题的难处,是作图只许用直尺(没有刻度,只能作直线的尺)和圆规。经过两千多年的探索,最后才证明在尺规的限制下,根本不可能作出所要求的图形。

  希腊人强调作图只能用直尺圆规,有下列原因。①希腊几何的基本精神,是从极少的基本假定(定义、公理、公设)出发,推导出尽可能多的命题。对于作图工具,自然也相应地限制到不能再少的程度。②受柏拉图哲学思想的影响。柏拉图片面强调数学在训练智力方面的作用而忽视其实用价值。他主张通过几何学习达到训练逻辑思维的目的,因此工具要有所限制,正象体育竞赛要有器械的限制一样。③以毕达哥拉斯学派为代表的希腊人认为圆是最完美的平面图形,圆和直线是几何学最基本的研究对象。有了尺规,圆和直线已经能够作出,因此就规定只使用这两种工具。历史上最早明确提出尺规限制的是伊诺皮迪斯,以后逐渐成为一种公约,最后总结在欧几里得的《几何原本》之中。

  圆和正方形都是常见的图形,怎样用尺规作一个正方形与已知圆等积?在历史上,也许没有任何一个几何问题象这个化圆为方问题那样强烈地引起人们的兴趣。早在公元前5世纪就有许多人研究这个问题,希腊人对于这种活动用一个专门的字来表示,意思是“献身于化圆为方问题”,可见事情相当普遍。这问题的最早研究者是安纳萨戈拉斯,他因不敬神的罪名被捕入狱,在狱中潜心研究化圆为方问题。以后著名的研究者有希波克拉底、安提丰、希皮亚斯等人。安提丰提出一种“穷竭法”,是近代极限论的雏形。先作圆内接正方形(或正6边形),然后每次将边数加倍,得内接8、16、32、…边形,他相信“最后”的正多边形必与圆周重合。这样就可以化圆为方了。结论是错误的,然而却提供了求圆面积的近似方法,成为阿基米德计算圆周率方法的先导。与中国刘徽的割圆术不谋而合。

  用尺规二等分一个角是轻而易举的,对于某些角,如90°、135°、180°,三等分也不难。自然会提出三等分任意角的问题。如能将60°角三等分,就可以作出正18边形和正9边形,三等分角问题就是由这一类问题引起的。关于倍立方问题的起源,有两个神话传说。第一个说鼠疫袭击提洛岛(爱琴海上小岛),一个预言者说已经得到神的谕示,必须将立方形的阿波罗祭坛体积加倍,瘟疫方能停息。一个工匠简单地将坛的各边加倍(体积变成原来的8倍),这并不符合神的意旨,因此瘟疫更加猖獗。错误发现后,希腊人将这个”提洛问题”去请教柏拉图。柏拉图说:神的真正意图是想使希腊人为忽视几何学而感到羞愧。另一个故事说克里特王米诺斯为儿子修坟,命令将原来设计的体积加倍,但仍保持立方的形状。

  公元前5世纪,雅典的“智人学派”以上述三大问题为中心,开展研究。正因为不能用尺规来解决,常常使人闯入新的领域中去。例如激发了圆锥曲线、割圆曲线以及三、四次代数曲数的发现。

  17世纪解析几何建立以后,尺规作图的可能性才有了准则。1837年P.L.旺策尔给出三等分任意角和倍立方不可能用尺规作图的证明,1882年C.L.F.von林德曼证明了 π的超越性,化圆为方的不可能性也得以确立。1895年(C.)F.克莱因总结了前人的研究,著《几何三大问题》(中译本,1930)一书,给出三大问题不可能用尺规来作图的简明证法,彻底解决了两千多年的悬案。

  虽然如此,还是有许多人不管这些证明,想压倒前人所有的工作。他们宣称自己已解决了三大问题中的某一个,实际上他们并不了解所设的条件和不可解的道理。三大问题不能解决,关键在工具的限制,如果不限工具,那就根本不是什么难题,而且早已解决。例如阿基米德就曾用巧妙的方法三等分任意角。下面为了叙述简单,将原题稍加修改。在直尺边缘上添加一点p,命尺端为O。设所要三等分的角是∠ACB,以C为心,Op为半径作半圆交角边于A、B;使O点在CA延线上移动,p点在圆周上移动,当尺通过B时,联OpB(见图)。由于Op=pC=CB,易知

本文链接:http://williamzanker.com/yushi/395.html