我要投搞

标签云

收藏小站

爱尚经典语录、名言、句子、散文、日志、唯美图片

当前位置:2019跑狗图高清彩图 > 预取 >

能解释一下内存存取吗

归档日期:07-16       文本归类:预取      文章编辑:爱尚语录

  可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。

  内存作为计算机的重要部件,近几年发展迅速,从SDRAM到如今的DDR3,内存经历了多个技术时代。本文就内存的发展简单讲解内存的存储原理和内存技术发展岁遇到的瓶颈。

  内存和显存被统称为记忆体(Memory),全名是动态随机存取记忆体(DynamicRandomAccessMemory,DRAM)。基本原理就是利用电容内存储电荷的多寡来代表0和1,这就是一个二进制位元(bit),内存的最小单位。

  DRAM的结构可谓是简单高效,每一个bit只需要一个晶体管加一个电容。但是电容不可避免的存在漏电现象,如果电荷不足会导致数据出错,因此电容必须被周期性的刷新(预充电),这也是DRAM的一大特点。而且电容的充放电需要一个过程,刷新频率不可能无限提升(频障),这就导致DRAM的频率很容易达到上限,即便有先进工艺的支持也收效甚微。

  “上古”时代的FP/EDO内存,由于半导体工艺的限制,频率只有25MHz/50MHz,自SDR以后频率从66MHz一路飙升至133MHz,终于遇到了难以逾越的障碍。此后所诞生的DDR1/2/3系列,它们存储单元官方频率(JEDEC制定)始终在100MHz-200MHz之间徘徊,非官方(超频)频率也顶多在250MHz左右,很难突破300MHz。事实上高频内存的出错率很高、稳定性也得不到保证,除了超频跑简单测试外并无实际应用价值。

  既然存储单元的频率(简称内核频率,也就是电容的刷新频率)不能无限提升,那么就只有在I/O(输入输出)方面做文章,通过改进I/O单元,这就诞生了DDR1/2/3、GDDR1/2/3/4/5等形形色色的内存种类。

  通常大家所说的DDR-400、DDR2-800、DDR3-1600等,其实并非是内存的真正频率,而是业界约定俗成的等效频率,这些DDR1/2/3内存相当于老牌SDR内存运行在400MHz、800MHz、1600MHz时的带宽,因此频率看上去很夸张,其实线MHz而已!

  内存有三种不同的频率指标,它们分别是核心频率、时钟频率和有效数据传输频率。核心频率即为内存Cell阵列(MemoryCellArray,即内部电容)的刷新频率,它是内存的真实运行频率;时钟频率即I/OBuffer(输入/输出缓冲)的传输频率;而有效数据传输频率就是指数据传送的频率(即等效频率)。

  通过上表就能非常直观的看出,近年来内存的频率虽然在成倍增长,可实际上真正存储单元的频率一直在133MHz-200MHz之间徘徊,这是因为电容的刷新频率受制于制造工艺而很难取得突破。而每一代DDR的推出,都能够以较低的存储单元频率,实现更大的带宽,并且为将来频率和带宽的提升留下了一定的空间。

  虽然存储单元的频率一直都没变,但内存颗粒的I/O频率却一直在增长,再加上DDR是双倍数据传输,因此内存的数据传输率可以达到核心频率的8倍之多!通过下面的示意图就能略知一二:

  相信很多人都知道,DDR1/2/3内存最关键的技术就是分别采用了2/4/8bit数据预取技术(Prefetch),由此得以将带宽翻倍,与此同时I/O控制器也必须做相应的改进。

  预取,顾名思义就是预先/提前存取数据,也就是说在I/O控制器发出请求之前,存储单元已经事先准备好了2/4/8bit数据。简单来说这就是把并行传输的数据转换为串行数据流,我们可以把它认为是存储单元内部的Raid/多通道技术,可以说是以电容矩阵为单位的。

  这种存储阵列内部的实际位宽较大,但是数据输出位宽却比较小的设计,就是所谓的数据预取技术,它可以让内存的数据传输频率倍增。试想如果我们把一条细水管安装在粗水管之上,那么水流的喷射速度就会翻几倍。

  明白了数据预取技术的原理之后,再来看看DDR1/2/3内存的定义,以及三种频率之间的关系,就豁然开朗了:

  之所以被称为“同步”,因为SDR内存的存储单元频率、I/O频率及数据传输率都是相同的,比如经典的PC133,三种频率都是133MHz。

  SDR在一个时钟周期内只能读/写一次,只在时钟上升期读/写数据,当同时需要读取和写入时,就得等待其中一个动作完成之后才能继续进行下一个动作。

  双倍是指在一个时钟周期内传输两次数据,在时钟的上升期和下降期各传输一次数据(通过差分时钟技术实现),在存储阵列频率不变的情况下,数据传输率达到了SDR的两倍,此时就需要I/O从存储阵列中预取2bit数据,因此I/O的工作频率是存储阵列频率的两倍。

  DQ频率和I/O频率是相同的,因为DQ在时钟上升和下降研能传输两次数据,也是两倍于存储阵列的频率。

  DDR2在DDR1的基础上,数据预取位数从2bit扩充至4bit,此时上下行同时传输数据(双倍)已经满足不了4bit预取的要求,因此I/O控制器频率必须加倍。

  至此,在存储单元频率保持133-200MHz不变的情况下,DDR2的实际频率达到了266-400MHz,而(等效)数据传输率达到了533-800MHz。

  DDR3就更容易理解了,数据预取位数再次翻倍到8bit,同理I/O控制器频率也加倍。此时,在存储单元频率保持133-200MHz不变的情况下,DDR3的实际频率达到了533-800MHz,而(等效)数据传输率高达1066-1600MHz。

  综上可以看出,DDR1/2/3的发展是围绕着数据预取而进行的,同时也给I/O控制器造成了不小的压力,虽然存储单元的工作频率保持不变,但I/O频率以级数增长,我们可以看到DDR3的I/O频率已逼近1GHz大关,此时I/O频率成为了新的瓶颈,如果继续推出DDR4(注意不是GDDR4,两者完全不是同一概念,后文会有详细解释)的话,将会受到很多未知因素的制约,必须等待更先进的工艺或者新解决方案的出现才有可能延续DDR的生命。

  展开全部RAM (random access memory),随机存取内存其主要特性为可随时读出或写入数据,但电源一中断则所储存之数据即消失,主要用来暂存程序与数据。而RAM又可分成动态内存(Dynamic RAM, DRAM)与静态内存(Static RAM,SRAM)两种。DRAM的储存密度较高、成本低,但需加上更新电路,速度较慢。SRAM速度快,但储存密度低、成本高。一般计算机所称的主存储器容量即是指安装DRAM的容量,而置于CPU与主存储器之间的高速缓存(Cache Memory)则是使用连度较快的SRAM,但因成本高、故容量都不大。

  所谓“随机存取”,指的是当存储器中的消息被读取或写入时,所需要的时间与这段信息所在的位置无关。相对的,读取或写入顺序访问(Sequential Access)存储设备中的信息时,其所需要的时间与位置就会有关系(如磁带)。

  一个长期的存储设备中(例如硬盘)。RAM和ROM相比,两者的最大区别是RAM在断电以后保存在上面的数据会自动消失,而ROM不会。

  现代的随机存取存储器几乎是所有访问设备中写入和读取速度最快的,取存延迟也和其他涉及机械运作的存储设备相比,也显得微不足道。

  现代的随机存取存储器依赖电容器存储数据。电容器充满电后代表1(二进制),未充电的代表0。由于电容器或多或少有漏电的情形,若不作特别处理,数据会渐渐随时间流失。刷新是指定期读取电容器的状态,然后按照原来的状态重新为电容器充电,弥补流失了的电荷。需要刷新正好解释了随机存取存储器的易失性。

本文链接:http://williamzanker.com/yuqu/297.html